Searches for Boosted DM

H. Alhazmi, KC Kong, G. Mohlabeng & **JCP** [1411.6632 & 1611.09866] D. Kim, S. Shin & **JCP** [1612.06867 & 1702.02944]

Jong-Chul Park

IBS-KIAS Joint Workshop February 07 (2017)

Searches for Boosted DM

H. Alhazmi, KC Kong, G. Mohlabeng & **JCP** [1411.6632 & 1611.09866] D. Kim, S. Shin & **JCP** [1612.06867 & 1702.02944] S. Shin's Talk Cosmic ray

Jong-Chul Park

IBS-KIAS Joint Workshop February 07 (2017)

What's Dark Matter?

Dark Matter (DM)

- **♦ DM**: ~25% of our Universe
- * **Compelling paradigm**: massive, non-luminous & stable particles

* Evidence

- ✓ Galaxy rotation curve
- ✓ Bullet cluster
- ✓ Gravitational lensing
- ✓ Structure formation
- ✓ CMB

✓ ...

- ✓ Coma Cluster
- ✓ Sky surveys

DM Search Strategies

DM Search Strategies

Minimal vs Non-minimal

Scenario with a single DM species

- ✓ Simplest & well-motivated scenario
- $\checkmark\,$ Stability of DM ensured (typically) by a discrete symmetry
- ✓ **Popular models** having a single type of DM candidate:
 - SUSY models with R-parity
 - Extra-D models with KK-parity

Scenario with multiple DM species

- ✓ Nothing stops from having more stable particles
 - Visible sector (SM) has many stable particles: p, e, v, γ
 - Rising (theoretical) interest in non-minimal scenarios

Detection of Boosted DM

What's Boosted DM?

Boosted DM (BDM)

- ◆ Generic phenomena in non-minimal DM sector:
 Late-time processes → Small fraction of DM today is relativistic: BDM
- ✤ Sources of boosted DM: non-minimal/extended DM sector
 - ✓ Assisted Freeze-Out: $\psi_i \psi_j \rightarrow \psi_k \psi_l$; ψ_k, ψ_l lighter (G. Belanger & JCP, 2011)
 - ✓ **Semi-annihilation**: $\psi_i \psi_j \rightarrow \psi_k \varphi$; Z_N DM symmetry (D'Eramo & Thaler, 2010)
 - \checkmark **Decay** $: \psi_i \rightarrow \psi_j + \varphi$

✓ ...

- ***** Detection of BDM: $\boldsymbol{v} \sim \mathbf{c}$
 - ✓ Reveal non-minimal features of DM sector
 - ✓ Conventional DM searches → Unsuitable → New Search Strategies!

Basic Set-up: Assisted Freeze-Out

- G. Belanger & **JCP** (2011)
- ***** Two species of DM: ψ_A , ψ_B with $m_A > m_B$ (e.g. $U(1)' \otimes U(1)''$, $Z'_2 \otimes Z''_2$)
- * ψ_A : dominant DM component, no direct coupling to the SM
 - → Assisted Freeze-Out Mechanism: required!

 ψ_B sub-dominant, direct coupling to the SM ($\mathcal{L} \supset -\frac{1}{2}\sin \epsilon X_{\mu\nu}F^{\mu\nu}$)

Basic Features

- Relic density of ψ_A is controlled by $\psi_A \overline{\psi}_A \rightarrow \psi_B \overline{\psi}_B$
- ♦ Detection of ψ_A : no-direct coupling to the SM → No
- ♦ Detection of relic ψ_B : small relic → No

- * ψ_B from annihilation of ψ_A : **Boosted DM** with γ=m_A/m_B
- **♦ Direct** detection of **boosted** ψ_B **→ Indirect** detection of ψ_A
 - → Smoking-gun for non-minimal DM sector!

BDM from Galactic Center

GC

Earth

• Flux of boosted ψ_{R} from the GC by the annihilation of ψ_{A} :

NFW profile (ρ_{sun} =0.3 GeV/cm³) + 10^o cone around GC

$$\Phi_{GC}^{10^{\circ}} = 9.9 \times 10^{-8} \text{ cm}^{-2} \text{s}^{-1} \left(\frac{\langle \sigma_{A\overline{A} \to B\overline{B}} v \rangle}{5 \times 10^{-26} \text{ cm}^{3}/\text{s}} \right) \left(\frac{20 \text{ GeV}}{m_{A}} \right)^{2}$$
Agashe et al. (2014)
$$\text{Eartl}$$

$$\text{Eartl}$$

$$\text{Low flux} \Rightarrow \text{Large volume detector to see } \psi_{B} + \text{SM} \Rightarrow \psi_{B} + \text{SM scattering}$$

→ Neutrino detectors: Super-K, IceCube, ...

Future: Hyper-K, DUNE, PINGU, ...

Detection of BDM

Large volume v detectors detect energetic charged particles

from *v*-matter collisions, i.e. $\nu_e n \rightarrow e^- p$

- ♦ Boosted DM: energetic e's resulting from $\psi_B e^- \rightarrow \psi_B e^-$
- ♦ Energetic e's → Cherenkov light / charged particle track

DUNE: LArTPC

Background & its Rejection

- * Major background: atmospheric neutrinos ($\nu_e n \rightarrow e^- p$)/
 - → Almost uniform in the entire sky!
- ♦ Background reduction: directionality → governed by θ_C
- ♦ $\theta_{\min} \sim 10^{\circ}$: optimal angle for S/\sqrt{B} due to the DM halo distribution

Earth

GC

 $\overline{\theta}_{C}$

Neutrino Fluxes

♦ For efficient rejection of solar ν BGs $\rightarrow E^{\min} \approx 20 \sim 30$ MeV

Billard et al. (2013)

Summary of Experiments

***** Expected number of background events (/year) $\sim V \cdot \theta_{C^2}$

	DUNE 10	DUNE 40	SK	HK
GC	1 with 10°	4 with 10°	7.01 with 10°	174 with 10°
Point	0.01 with 1°	0.04 with 1°	0.632 with 3°	15.7 with 3°

Single-ring o-decay e-like events

Experimental Reach (GC)

♦ Total number of signal events: $N_{\text{sig}}^{\text{GC}} = \Delta T N_{\text{target}} \Phi_{\text{GC}}^{\theta_C} \sigma_{Be^- \to Be^-}$

Experimental Reach (GC)

Experimental coverage in the mass plane

Background Reduction

- ✤ Point-like source → Efficient background reduction!
- $\mathbf{\bullet} \ \boldsymbol{\theta}_{C} \sim \boldsymbol{\theta}_{\text{res}} \text{ (cf. GC: } \boldsymbol{\theta}_{C} \sim \max\{\mathbf{10^{o}}, \boldsymbol{\theta}_{\text{res}}\} \text{)} \quad N_{\text{BG}}^{\boldsymbol{\theta}_{C}} = \frac{1 \cos \boldsymbol{\theta}_{\text{res}}}{2} N_{\text{BG}} \sim \boldsymbol{\theta}_{\text{res}}^{2}$

Cood angular resolution is very important.

	Volume	E_{th}	$ heta_{ m res}$	Running Time
	(kTon)	(MeV)	$(^{\circ})$	(years)
SK [37]	22.5	100	3°	> 13.6
HK [38]	560	100	3°	
DUNE [22]	40-50	30	1°	
PINGU/IceCube:	500/10^6, a	fev GeV/100 Ge	V, 23 ⁰ a	t ~GeV

★ Expected number of background events (/year) $\sim \theta_{res}^2$

	DUNE 10	DUNE 40	SK	HK
GC	1 with 10°	4 with 10°	7.01 with 10°	174 with 10°
Point	$\bigcirc 0.01$ with 1°	$0.04 \text{ with } 1^{\circ}$	0.632 with 3°	15.7 with 3°

BDM from the Sun

- ★ Self-interaction of the secluded DM ψ_A greatly enhances the capture rate in the Sun → The Sun becomes a point-like source of BDM
- ✤ Time evolution of DM number in the Sun

$$\frac{dN_{\chi}}{dt} = C_c + (C_s - C_e)N_{\chi} - (C_a + C_{se})N_{\chi}^2$$

- ✓ C_c : capture rate by nuclei inside the Sun
- ✓ **C**_s: DM self-capture rate
- \checkmark C_e: evaporation rate due to DM-nuclei interaction
- ✓ **C**_a: annihilation rate
- \checkmark C_{se}: evaporation rate due to DM self-interaction

Chen, Lee, Lin & Lin (2014)

For BDM from the Sun, see also Berger et al. (arXiv:1410.2246)

Captured Heavy DM ψ_A

$$N_{\chi}(t) = \frac{C_c \tanh(t/\tau_{\rm eq})}{\tau_{\rm eq}^{-1} - (C_s - C_e) \tanh(t/\tau_{\rm eq})/2} \qquad \tau_{\rm eq} = \frac{1}{\sqrt{C_c(C_a + C_{se}) + (C_s - C_e)^2/4}}$$

Flux of BDM ψ_B from the Sun

$$\frac{d\Phi_B^{\text{Sun}}}{dE_B} = \frac{\Gamma_A^{\psi_A}}{4\pi R_{\text{Sun}}^2} \frac{dN_B}{dE_B}$$
$$\frac{dN_B}{dE_B} = 2\delta(E_B - m_A) \qquad \Gamma_A^{\psi_A} = \frac{C_a}{2} N_{\psi_A}^2$$

★ Annihilation of ψ_A produces 2 mono-energetic boosted ψ_B 's.

- Φ_{B}^{Sun} can be **comparable or even larger** than Φ_{B}^{GC} .
- ★ We have to take into account other factors, e.g. *E* loss of ψ_B during propagation through the Sun ~ O(1-10 GeV).

Experimental Reach

* 20 sensitivities for ~10 years of data $N_{\text{sig}} = \Delta T N_{\text{target}} \Phi_B^{\text{Sun}} \sigma_{Be^- \to Be^-}$

Experimental Reach

\clubsuit 20 sensitivities for 13 years of data for SK, HK, DUNE10/40

$$\sigma = \sqrt{2\left(N_{\rm sig} + N_{\rm BG}\right)\log\left(1 + \frac{N_{\rm sig}}{N_{\rm BG}}\right) - 2N_{\rm sig}}$$

Conclusion & Future

- > **Boosted DM(BDM)** ($v \sim c$): Generic in non-minimal DM sector
- ➤ Direct detection of light BDM → Indirect detection of heavy DM
- > Small flux \rightarrow Larger volume (V_{eff})
- ▷ Reduction of *v* background → smaller angular resolution (θ_{res})
- Hyper-K/DUNE40 are so far the best experiments for BDM detection.
- ► **IceCube/PINGU** with $V_{\text{eff}}(E) \& \theta_{\text{res}}(E) \rightarrow$ Improving S/\sqrt{B}

Thank you